Validity of the "sharp-kink approximation" for water and other fluids.

نویسندگان

  • R Garcia
  • K Osborne
  • E Subashi
چکیده

The contact angle of a liquid droplet on a solid surface is a direct measure of fundamental atomic-scale forces acting between liquid molecules and the solid surface. In this work, the validity is assessed of a simple equation, which approximately relates the contact angle of a liquid on a surface to its density, its surface tension, and the effective molecule-surface potential. This equation is derived in the sharp-kink approximation, where the density profile of the liquid is assumed to drop precipitously within one molecular diameter of the substrate. It is found that this equation satisfactorily reproduces the temperature-dependence of the contact angle for helium on alkali metal surfaces. The equation also seems be applicable to liquids such as water on solid surfaces such as gold and graphite, on the basis of a comparison of predicted and measured contact angles near room-temperature. Nevertheless, we conclude that, to fully test the equation's applicability to fluids such as water, it remains necessary to measure the contact angle's temperature-dependence. We hypothesize that the effects of electrostatic forces can increase with temperature, potentially driving the wetting temperature much higher and closer to the critical point, or lower, closer to room temperature, than predicted using current theories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a rheological model for polymeric fluids based on FENE model

Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially in the transient flow. In addition, both FENE and FENE-P mo...

متن کامل

Wetting of Curved Surfaces

As a first step towards a microscopic understanding of the effective interaction between colloidal particles suspended in a solvent we study the wetting behavior of one-component fluids at spheres and fibers. We describe these phenomena within density functional theory which keeps track of the microscopic interaction potentials governing these systems. In particular we properly take into accoun...

متن کامل

Experimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids

This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...

متن کامل

An Improved ISM Equation of State for Polar Fluids

We developed an equation of state (EOS) by Ihm, Song, and Mason (ISM) for polar fluids. The model consists of four parameters, namely, the second virial coefficient, an effective van der Waals co-volume, a scaling factor, and the reduced dipole moment. The second virial coefficient is calculated from a correlation that uses the heat of vaporization, and the liquid density at the normal boiling ...

متن کامل

Constraining the Water Activity during Peak Metamorphism in a Thermal Aureole; a Mineral Equilibria Approach

In order to assess the presence or absence of fluids under peak metamorphic conditions within the inner aureole of the Etive igneous complex in west Scotland, eight suitable metabasic hornfels samples and one suitable pelitic hornfels were used to calculate water activities using a mineral equilibria. Calculated activities for water are lower than unity in the pelitic sample and extremely low i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 112 27  شماره 

صفحات  -

تاریخ انتشار 2008